

Project Number : IST-2002-002154
Project Title : Distributed Adaptive Security by Programmable Firewall

DIADEM Firewall

D6 - Revised Interfaces Specification

Deliverable Type : Document

Dissemination: Public

Contractual date :

Editor : Dušan Gabrijelčič, Jozef Stefan Institute, (dusan@e5.ijs.si)

File Name: Diadem Firewall – D6 – Revised Interfaces Specification.doc

Contributors : See list of authors

Version : Final

Version Date : 24.1.2005

Deliverable Status: Deliverable D6

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 1

The DIADEM Firewall consists of:

 Partner Short
name

Country

1 France Telecom FT France
2 University of Tübingen TU Germany
3 IBM Research GmbH Zurich Research

Laboratory
IBM ZRL Switzerland

4 Imperial College London Imperial United Kingdom
5 Jozef Stefan Institute JSI Slovenia
6 Groupe des Ecoles des Télécommunications GET France
7 Polish Telecom TP Poland

Project Management:
Yannick Carlinet (FT)
Phone +33 2.96.05.03.25
Fax: +33 2 96 05 37 84
E-mail yannick.carlinet@francetelecom.com
France Telecom DAC/R2I
2 ave. Pierre Marzin,
22307 Lannion, France

List of authors:

Dušan Gabrijelčič, JSI
Yannick Carlinet, FT
Gerhard Muenz, TU
Falko Dressler, TU
Roland Wehage, TU
Sherif Yusuf, Imperial
Patricia Sagmeister, IBM ZRL
Gero Dittmann, IBM ZRL

Executive summary

This document describes the DIADEM firewall application programming interfaces (APIs) between
the system elements defined by the DIADEM firewall architecture to support the operations and tasks
defined in deliverable D5 [3]. The Monitoring API interfaces between Monitoring Element (ME) and
Violation Detection (VD) to enable the VD to access monitored data and control its collection,
exportation and aggregation in unified manner. The interface abstracts the hardware details of the
specific Monitoring Device. The Notify API enables exchange of events in the system. The events are
either notifications about the attacks or events that trigger the policies on the system elements. The
System Manager can use the Service API to disseminate the policies to appropriate system elements.
To counter the attacks, the System Manager can use events to trigger the policies on Firewall Elements
(FE) or access their response mechanisms directly through Response API. The response mechanisms
are based on response capabilities of Firewall Devices (FD) and the firewall API provides a device
independent abstraction of the details of specific FDs. The response mechanisms are not always
sufficient to mitigate new attacks. The Service API exported by the FE can be used to deploy code
modules in the FDs to be able to mitigate them. On high-speed broadband connections, classification
of the network traffic can be a major system bottleneck. The Classifier API enables the Firewall API to
perform high speed classification in hardware and therefore achieve better performance. Each API is
described with examples of usage that together support “Initial Demonstrator Specification” presented

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 2

in deliverable D7 [4].

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 3

Acronyms

BEEP Block Extensible Exchange Protocol
FD Firewall Device
FE Firewall Element
IDMEF Intrusion Detection Message Exchange Format
IETF Internet Engineering Task Force
IP Internet Protocol
IPFIX IP Flow Information eXport
MD Monitoring Device
ME Monitoring Element
PSAMP Packet SAMPling
RPC Remote Procedure Call
SCTP Stream Control Transmission Protocol
SM System Manager
SMI Structure of Management Information
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SSH Secure Shell
TCP Transmission Control Protocol
TS Time Stamp
UDP User Datagram Protocol
VD Violation Detection
XML eXtensible Markup Language

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 4

Table of Contents

1 INTRODUCTION ... 6

2 SERVICE API ... 6
2.1 LOAD/REMOVE POLICY.. 6
2.2 ACTIVATE/DISABLE POLICY .. 7
2.3 LOAD/REMOVE MODULE ... 7
2.4 QUERY CAPABILITIES OF THE ELEMENT .. 7
2.5 QUERY CONFIGURATION/STATE OF THE ELEMENT .. 7
2.6 EXAMPLES ... 8

3 RESPONSE API .. 10
3.1 KILL SESSION ... 11
3.2 REDIRECT... 11

4 NOTIFY API.. 13
4.1 IDMEF MESSAGE FORMAT ... 13
4.2 NOTIFY API EXAMPLE ... 14
4.3 ELVIN CONTENT BASED MESSAGING.. 16

5 MONITORING API.. 18
5.1 NETCONF PROTOCOL ... 19

5.1.1 General Information.. 19
5.1.2 Remote procedure calls and operations .. 19
5.1.3 Transport protocol requirements... 20
5.1.4 Configuration datastores... 20
5.1.5 Netconf capabilities ... 20

5.2 NETCONF OPERATIONS.. 20
5.2.1 <get-config> ... 21
5.2.2 <edit-config> .. 21
5.2.3 <copy-config>... 21
5.2.4 <delete-config>... 21
5.2.5 <lock> ... 21
5.2.6 <unlock> ... 22
5.2.7 <get>... 22
5.2.8 <close-session>... 22
5.2.9 <kill-session>.. 22

5.3 CONFIGURATION OF MONITORING ELEMENTS USING NETCONF... 22
5.3.1 Root element <monitorConfig> .. 22
5.3.2 Common types ... 23
5.3.3 Exporting process configuration types .. 23
5.3.4 IP flow metering process configuration types ... 23
5.3.5 Aggregation process configuration types .. 23
5.3.6 Packet sampling configuration types... 24
5.3.7 Usage of the operation attribute.. 24

5.4 EXAMPLES ... 25
6 FIREWALL API ... 28

6.1 OPERATIONS ON A GROUP.. 30
6.2 RULE OPERATIONS... 31
6.3 COMMUNICATION IN BETWEEN FIREWALL ELEMENT AND FIREWALL DEVICES 33

7 CLASSIFIER API ... 34
7.1 RULE-SPECIFIC FUNCTIONS.. 34
7.2 ABSTRACT PACKET-FILTER RULE DESCRIPTION.. 35

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 5

7.3 INSERT RULE .. 36
7.4 DELETE RULE... 37
7.5 APPEND RULE .. 37
7.6 MODIFY RULE .. 38
7.7 SEARCH FUNCTION .. 38
7.8 SETUP FUNCTION ... 39

8 CONCLUSIONS.. 40

9 REFERENCES .. 41

10 APPENDIX .. 42

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 6

1 Introduction

The “Revised Interface specification” aims to revise a set of DIADEM APIs defined in “Initial
Interface Specification”, project deliverable D2 [2]. The APIs in the document are extended, further
refined and complemented with examples of their usage. They were designed in a way to provide
functionality required for operation of DIADEM distributed firewall architecture as defined in
deliverable D5 [3]. The examples focus on project use cases as defined in “Initial Demonstrator
Specification”, deliverable D7 [7].
In the document the high level APIs are presented first: the Service API in section 2, the Response API
in section 3 and the Notify API in section 4. As high level APIs they provide basic system services like
event service, policy dissemination, extensibility of response mechanisms and accessibility of response
actions. They rely on lower level APIs, namely the Monitoring, Firewall and Classifier API, which are
presented in sections 5 to 7. They enable a usage of various devices for monitoring and firewall
purposes and provide access to high speed classification in hardware.

2 Service API

The service API is a remote interface offered by an element, i.e. a Monitoring Element or a Firewall
Element. This API allows the Violation Detection or the System manager to delegate part of their
decision logic by transmitting policies to the elements. The API allows also to extend the
functionalities (or capabilities) of the devices controlled by the element, and manage these extensions.
The extension of the functionalities of a device is made thanks to modules. They are code archives that
can be deployed and executed remotely by the element.

This API contains the following functionalities:

 Load/Remove policy
 Activate/Disable policy
 Load/Remove module
 Query capabilities of the element
 Query configuration/state of the element

2.1 Load/Remove policy

These operation are used either by the System Manager to deploy a policy on a Firewall Element and
on Violation Detection Facilities or by the Violation Detection to deploy policies on a Monitoring
Element. Once a policy is loaded, it must be activated before it is actually enforced. Once a policy is
not used anymore, and is not planned to be used in the future, it can be removed from the element in
order to free some resources (memory, disk space). The signatures of the functions are as follows:
• loadPolicy(Policy p) returns LoadPolicyResult
 where LoadPolicyResult is an object that contains the following fields:
 boolean success
 String errorMessage

String identifier
The return type contains a Boolean that indicates if the policy could successfully be loaded. If its value
is true the field identifier is set, and if its value is false, the field errorMessage contains an
explanation of the problem.

• removePolicy(String identifier) returns RemovePolicyResult
 where RemovePolicyResult is an object that contains the following fields:
 boolean success
 String errorMessage

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 7

The return type contains a Boolean that indicates if the policy could successfully be loaded, and if its
value is false, the field errorMessage contains an explanation of the problem.

2.2 Activate/Disable policy

Once activated, the policy is actually enforced on the element thanks to this function. When a policy
should not be enforced anymore, it can be disabled through the provided function. The policy can later
be totally removed of the element, or activated again. The signatures of the functions are as follows:
• activatePolicy(String identifier) returns ActivatePolicyResult
 where ActivatePolicyResult is an object that contains the following fields:
 boolean success
 String errorMessage

• disablePolicy(String identifier) returns DisablePolicyResult
 where DisablePolicyResult is an object that contains the following fields:
 boolean success

String errorMessage

2.3 Load/Remove module

This function is used to load a module on an element. A monitoring module can be loaded on a
Monitoring Element by the Violation Detection Facility, or a response module can be loaded on a
Firewall Element by the System Manager. The component that uses this function must of course make
sure beforehand that the element supports the loading of new modules (cf. 'query capabilities of the
element' below). Once a module is loaded, the new functionality of the element can be used by a
policy. When a module is not needed anymore, it can be removed from the element to free up
resources. The functions are as follows:
• loadModule(Module m) returns LoadModuleResult

in which Module is an object that contains a path to the code archive of the module.
LoadModuleResult is an object with the following structure:

 boolean success - set to true if the operation succeeds
String errorMessage - holds an error message, if applicable
String id - an identifier for the loaded module

• removeModule(String id) returns RemoveModuleResult
RemoveModuleResult contains the field:

boolean success - set to true if the operation succeeds
String errorMessage - holds an error message, if applicable

2.4 Query capabilities of the element

Since a great diversity of Monitoring Devices or Firewall Devices can be part of the Diadem Firewall
distributed architecture, it is sometimes necessary for the Violation Detection Facility or the System
Manager to have information about the capabilities of these devices. Indeed it is useless to deploy a
policy on an element if the underlying device does not have the ability to enforce it. On the other hand
if a new module is loaded in the Firewall Device the capabilities of the device are extended.
• listCapabilites()returns ListCapabilities

ListCapabilities is a list of Strings, each one describing a capability the element has
• hasModuleEnvironment() returns boolean – the return value is true if the element

has a module environment available for the element.
• addCapability(String capability)

2.5 Query configuration/state of the element

This function returns information about the state of the element, such as: what policies are loaded,

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 8

what policies are enforced, what modules are available, and general information about the element.

The element offers the following additional functions:
• listLoadedPolicies() returns LoadedPolicyList
• listEnforcedPolicies() returns EnforcedPolicyList
• listLoadedModule() returns LoadedModuleList

where LoadedPolicyList and EnforcedPolicyList are lists of objects of type
Policy, and LoadedModuleList is a list of objects of type Module (defined in
subsection 2.3).

• getConfig() returns ElementConfig
ElementConfig contains informatin such as the element name, network name, IP address,
performance, what are the devices attached to this element, and so on.

2.6 Examples

Let us consider in this example a Firewall Element that has a router and an Open Firewall Device
attached to it as shown in Figure 1.

Firewall
Element 1

System
Manager

Service API

Router

Data
Level

Element
Level

Administrative
Domain Level

Router
specific API

Open Firewall
Device

Open Firewall
Device specific
API

Firewall
Element 2

Firewall
Element 1
Firewall

Element 1

System
Manager
System

Manager

Service API

RouterRouter

Data
Level

Element
Level

Administrative
Domain Level

Router
specific API

Open Firewall
Device

Open Firewall
Device

Open Firewall
Device specific
API

Firewall
Element 2
Firewall

Element 2

Figure 1: example setup

This example is in relation to the TCP SYN flood use-case described in details in D7 [4]. We suppose
that an attack was detected and that the System Manager was notified of this attack. The System
Manager now needs to install a reaction function on the Firewall Elements. The reaction function
requires non-standard specialized processing on the traffic flows, so it cannot be implemented by the
router. Therefore the System Manager must instruct the router to re-route the flows to the Open
Firewall Device so that they can be processed. This is done as follows:

Let TCPSynRedirect be an object of type Policy that contains this semantics: if an IP packet is a
TCP SYN message and has destination address IPvictim then redirect it to IPODF (IPvictim and IPODF
represent respectively the IP address of the victim of the previously detected attack and the address of

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 9

the Open Firewall Device).

The System Manager loads the policy by calling this function:
loadPolicy(TCPSynRedirect)
on the Firewall element. When the System Manager calls the function
activatePolicy(“TCPSynRedirect”)
the Firewall Element configures the router so that the considered traffic is actually redirected to the
Open Firewall Device.

Since the processing to be performed on the redirected traffic is very specialized, and therefore is not
available on the device, the system Manager now has to load a module that will contain the logic of
this processing. We suppose this logic is stored by the System Manager as a Java archive of name 'm'.
The System Manager calls the function
loadModule(m)
It also creates the policy TCPSynProcessing: if an IP packet is a TCP SYN message then apply
the processing of module 'm' (please see [4] for a detailed description of this processing). Therefore
calling
loadPolicy(TCPSynProcessing)
and
activatePolicy(“TCPSynProcessing”)
will have the Firewall Element configure the Open Firewall Device so that the latter actually perform
the required processing.

This is summarized in the following sequence diagram:

 System

Manager
Firewall

Element 1 Router
Open

Firewall
Device

Firewall
Element 2

loadPolicy(TCPSynRedirect)

activatePolicy(TCPSynRedirect)

configure routing

loadModule(m)

install code archive m

loadPolicy(TCPSynProcessing)

activatePolicy(TCPSynProcessing)

suspected traffic is re-routed

System
Manager

Firewall
Element 1 Router

Open
Firewall
Device

Firewall
Element 2

loadPolicy(TCPSynRedirect)loadPolicy(TCPSynRedirect)

activatePolicy(TCPSynRedirect)activatePolicy(TCPSynRedirect)

configure routingconfigure routing

loadModule(m)loadModule(m)

install code archive minstall code archive m

loadPolicy(TCPSynProcessing)loadPolicy(TCPSynProcessing)

activatePolicy(TCPSynProcessing)activatePolicy(TCPSynProcessing)

suspected traffic is re-routedsuspected traffic is re-routed

Figure 2: Sequence diagram of an example showing the redirection
of a flow, and its processing by the OFD

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 10

3 Response API

This API defines specific actions that can be performed as the result of a notification being received.
The response actions could be initiated by the System Manager, distributed local System Managers or
even by an ‘intelligent’ firewall which detects and responds to attacks by itself. Defined below are
typical APIs for some examples of such responses.

• Kill Session

<Source Address, Destination Address, Source Port, Destination Port, Sequence Number,
Acknowledgement Number, Flag(s), Direction>

o Flag(s): RESET flag must be set, at least for a TCP RESET packet
o Direction: Either both ends of the connection will receive the RESET packet, or

just the victim’s machine. If both ends are to be sent RESET packets, then the
source/destination addresses will be interchanged for the attacker’s RESET packet

• Redirect - can be done with firewall capabilities or with manipulation of routes

<Protocol, Source Address, Destination Address, Source Port, Destination Port, Redirect
Destination, Action>
<Destination Address, Redirection Type<Routing Algorithm >, Action>

o Routing Algorithm: The redirection could be based on routing, where we specify
the next hop of the packet, or we provide a static route via a routing table

o Redirect Destination: Either for Blackhole (to be discarded) or Sinkhole (to be
logged) routing

o Action: For Sinkhole, some data need to be logged

• Rate Limiting

<Protocol, Source Address, Destination Address, Source Port, Destination Port, Flag(s), Limit,
Action>

o Flag(s): Flag bits need to be set for some TCP protocol attacks, for example, SYN
bit will be set in a TCP SYN flood attack

o Limit: The threshold NOT to be exceeded. This limit could be number of packets,
maximum bandwidth etc.

o Action: We need to Drop packets after threshold is reached, but we may also want
to Log them

Below are two examples of responses to a received notification of a TCP SYN attack. The response is
simply to send a RST packet to both the source and target hosts. In the case where the source host does
not handle RST packets in the normal way, we are still able to reset the connection with the RST
packet sent to the target host, since this should handle the RST packet in the required manner.

When the response system receives the notification, it examines it to determine the appropriate action
to undertake. Once the action is determined, the response system filters out the necessary information
from the notification, and then constructs the response that is sent to the appropriate device that will
carry out the action. The information required for the API can be found in deliverable D4.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 11

3.1 Kill session

The first response that can be applied to this attack is to simply kill (disconnect) the attempted
connection. The information required from the notification is the source of the attack, the target of the
attack and some additional data, which in this case are IP packet header data. The rest of the elements
in the API are specific to the response and the device that will carry out the action, for example, the
<action> element states the action that needs to be performed by the device, in this case kill_session
equates to send RST packet. In addition, the <direction> element states whom the RST packet should
be sent to, the source, target or both hosts.

<response>
 <action> kill_session </action>
 <direction> both </direction>
 <source>
 <spoofed> no </spoofed>
 <interface> eth0 </interface>
 <node>
 <category> unknown </category>
 <name> achilles </name>
 <address> 10.0.1.1 </address>
 <location> DSE Lab </location>
 </node>
 </source>
 <target>
 <decoy> no </spoofed>
 <interface> eth1 </interface>
 <node>
 <category> unknown </category>
 <name> poseidon </name>
 <address> 10.0.2.1 </address>
 <location> DSE Lab </location>
 </node>
 </target>
 <additional_data>
 <transport_fields>
 <tcp>
 <src_seq> 40000 </src_seq>
 <src_ack> 60000 </src_ack>
 <dest_seq> 140000 </dest_seq>
 <dest_ack> 160000 </dest_ack>
 </tcp>
 </transport_fields>
 <network_fields>
 <flags>
 <syn> true </syn>
 </flags>
 </network_fields>
 </additional_data>
</response>

3.2 Redirect

The second possible response that can be applied to a TCP SYN attack is to redirect the attempted
connection away from the target, until we can confirm the validity of the source. The information
required from the notification for redirection is the source of the attack, the target of the attack and

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 12

some additional data, which in this case are IP packet header data. In addition, we require the type of
redirection, which is different depending on the device that will carry out the redirection. The rest of
the elements in the API are specific to the response and the device that will carry out the action, for
example, the <action> element states the action that needs to be performed by the device, in this case
redirect the packets. This <action> element is different to the one that is a child of the
<redirection_type> element, which states whether the device should log the packet or not.

<response>
 <action> redirect </action>
 <redirection_type>
 <firewall> </firewall>
 <routing>
 <routing_algorithm> </routing_algorithm>
 </routing>
 <action> </action>
 </redirection_type>
 <redirect_destination> </redirect_destination>
 <source>
 <spoofed> no </spoofed>
 <interface> eth0 </interface>
 <node>
 <category> unknown </category>
 <name> achilles </name>
 <address> 10.0.1.1 </address>
 <location> DSE Lab </location>
 </node>
 </source>
 <target>
 <decoy> no </spoofed>
 <interface> eth1 </interface>
 <node>
 <category> unknown </category>
 <name> poseidon </name>
 <address> 10.0.2.1 </address>
 <location> DSE Lab </location>
 </node>
 </target>
 <additional_data>
 <transport_fields>
 <tcp>
 <src_port> </src_port>
 <dest_port> </dest_port>
 </tcp>
 </transport_fields>
 <network_fields>
 <protocol> tcp </protocol>
 </network_fields>
 </additional_data>
</response>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 13

4 Notify API

4.1 IDMEF Message Format

Figure 3 describes the IDMEF message format that is used for the notification of attacks. It is a
template that requires the data to be filled. Some of the objects will not have a value for some
messages. Most of the object are self-explanatory, but below we give a brief description of the main
component that need clarification.

IDMEF Message

Analyzer

Calssification

Target

Source

CreateTime

Node
User

Process
Service

CreateTime

Analyzer

Alert HeartBeat

Assesment

DetectTime

Additional
Data

Figure 3: IDMEF Message Format Structure

The following is a description of some of the main elements:

<idmef>
The top most element of any XML description of the IDMEF message format

<alert>
One of the two types of messages supported. The alert message is for when there is a need to report
that an incident has occurred or is occurring.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 14

<analyzer_id>
A unique identifier for the analyzer (sensor) that generated the alert. This identifier only has to be
unique in a single domain.

<node>
The node element provides additional information about the device, such as the network address,
name, location etc.

<create_time>
The time the message is generated. This is not necessarily the same time as the time incident occurred.

<detect_time>
This is the time the incident is actually detected.

<source>
Details of the source(s) that generated the event, including name, address, location, user(s),
process(es), interface it is seen on, if the address is spoofed etc.

<target>
Details of the possible target(s) of the generated event, including name, address, location, user(s),
process(es), interface it is seen on, if the target is decoy etc.

<classification>
The classification provides the source from which the origin of the alert originates, and a url where
more information about the alert can be found etc.

<assessment>
This element gives an analysis of the event that occurred. The impact it has (had) on the system, the
confidence of the analyzer that the event is a genuine attack, and in some cases, where the analyzer can
respond, the action taken by the analyzer.

<additional_data>
This is where users can make use of the scalability of the message format. Any extra information that
can be obtained from the attack that is needed is included here.

<heart_beat>
This is the second type of message supported in IDMEF. It is used to notify the listening managers that
the analyzer is still alive, but has nothing to report. This should be sent periodically at specified times.
Basically, the absence of a heart beat message at the specified times can be seen as an event itself.

4.2 Notify API example

Here is an example use of the IDMEF format in a notification of a TCP SYN attack alert. Some of the
elements from the full IDMEF XML have been omitted because they do not have any data and for
clarity.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 15

<notify>
 <idmef>
 <version> 1.0 </version>
 <alert>
 <ident> dos_attack </ident>
 <analyzer>
 <analyzer_id> dse_lab_athena </analyzer_id>
 <node>
 <category> unknown </category>
 <name> athena </name>
 <address>
 <category> ipv4-addr </category>
 <address> 10.0.1.2 </address>
 </address>
 <location> DSE Lab </location>
 </node>
 </analyzer>
 <source>
 <spoofed> no </spoofed>
 <interface> eth0 </interface>
 <node>
 <category> unknown </category>
 <name> achilles </name>
 <address>
 <category> ipv4-addr </category>
 <address> 10.0.1.1</address>
 </address>
 <location> DSE Lab </location>
 </node>
 <user>
 <user_id> sy99 </user_id>
 </user>
 <process>
 <process_id> telnet <process_id>
 </process>
 <service>
 <name> netcat </name>
 </service>
 </source>
 <target>
 <decoy> no </spoofed>
 <interface> eth1 </interface>
 <node>
 <category> unknown </category>
 <name> poseidon </name>
 <address>
 <category> ipv4-addr </category>
 <address> 10.0.2.1 </address>
 </address>
 <location> DSE Lab </location>
 </node>
 <user>
 <user_id> sy99 </user_id>
 </user>
 <process>
 <process_id> day_time_service <process_id >

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 16

 </process>
 <service>
 <name> netcat </name>
 </service>
 </target>
 <classification>
 <origin> unknown </origin>
 <name> tcp_syn_attack </name>
 </classification>
 <assessment>
 <impact>
 <severity> medium </severity>
 <completion> succeeded </completion>
 <type> dos </type>
 </impact>
 <action>
 <category> other </category>
 </action>
 <confidence>
 <rating> high </rating>
 </confidence>
 </assessment>
 <additional_data>
 <transport_fields>
 <tcp>
 <src_seq> 40000 </src_seq>
 <src_ack> 60000 </src_ack>
 <dest_seq> 140000 </dest_seq>
 <dest_ack> 160000 </dest_ack>
 </tcp>
 </transport_fields>
 </additional_data>
 </alert>
 </idmef>
</notify>

4.3 Elvin Content Based Messaging

We have decided to adopt the Elvin event notification service for the event notification in the Diadem
project. Therefore the Notify API for will be those defined by the Elvin system, for example send,
receive etc. Elvin is a content based messaging service that routes messages from one location to
another, based entirely on the content(s) of each message. Elvin provides an extremely simple,
flexible and secure communications infrastructure.

Elvin provides generic libraries that is linked by the client program and provides functions or classes
used to access the Elvin4 server. To send notifications in Java for example, a producer has to build a
Notification message, and emit the notification as follows:

<notify(Notification n)>

The Notification message is created with multiple Name/Value pairs. The name is always of type
String, and the value file can be either a String or any Literal, for example:

<String, Integer>
<String, Long>
<String, Double>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 17

Elvin uses client-server architecture for delivery of notifications. Clients establish sessions with an
Elvin server process and are then able to send notifications for delivery or register to receive
notifications sent by others. Clients can act as both producers and consumers of information within the
same session.

The Elvin server manages client connections and routes notifications from producers to consumers. A
consumer interested in a notification registers a subscription with the server; this subscription
expresses selection criteria in terms of the content of each message. When the server receives a
notification, it checks the content of the message against all registered subscriptions and forwards the
notification to each client with a matching subscription. A single notification can match any number of
subscriptions and is delivered to all active clients with a match.

A consumer receives notifications by adding a subscription to the Elvin server, with the following
interface:

<addSubscription(Subscription sub)>

The Subscription from the consumer is written using the Elvin subscription language. An example of a
subscription is:

(attack = = “tcp syn flood” && sensor_id = = “10.0.1.2” && regex(user, “[Ss]y99”)

Basically, the subscription uses Name/Value pairs from the notification message, and/or it could be
based on a regular expression. The Elvin subscription language provides a number of functions, which
can be used in the subscription. Examples of such functions are:

The string comparison functions test strings in various ways. They test the first argument, which must
name a value in the notification, to see if it matches any of the subsequent arguments.

begins-with(name, string, ...): returns true if the value of name is a string and begins with any of the
string arguments, bottom if the value name is not a string or not present in the notification and false
otherwise.

contains(name, string, ...): returns true if the value of name is a string and it contains any of the string
arguments, bottom if the value name is not a string or not present in the notification and false
otherwise.

ends-with(name, string, ...): returns true if the value of name is a string and ends with any of the string
arguments, bottom if the value name is not a string or not present in the notification and false
otherwise.

The key advantage of Elvin is that messages are not addressed to a single recipient like a letter, or even
a specific group like a notice board. The Elvin server delivers unaddressed notifications based on the
information they contain rather than the direction they are sent. Producers do not have to specify a
recipient or group of recipients. Recipients themselves, who in general are more aware of what
information they require anyway, select only the messages of interest through their subscription.

Notifications in Elvin are delivered based on their content so the recipient must describe the messages
of interest. Elvin requires consumers to provide a subscription, expressed in a simple syntax, which
will match the events of interest. After establishing a connection, one or more expressions are sent to
the server. While the consumer remains connected, all matching notifications are delivered via the
connection.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 18

Producers build a notification by inserting name-value pairs in a notification object. The name
is specified as a string, and the value can be an integer, float, double or string. The
subscription method is an expression that is also in the form of a name-value pair, written in
Elvin’s subscription language.
Currently, the subscription can only be registered based on simple value types such as integer,
float, double, and string, with the corresponding name as a string. We are currently in
discussion with the developers of Elvin, in an attempt to provide subscription based on
querying XML documents using XPath XML query language.

5 Monitoring API

Monitoring Elements provide a common, abstract representation of the monitoring process by hiding
device-specific implementation details of the underlying Monitoring Devices. The Monitoring API is
used to configure and control the Monitoring Elements. A Monitoring Element translates Monitoring
API calls into the corresponding device-specific commands of the associated Monitoring Devices. The
Monitoring API also supports querying information about the status and device capabilities of the
Monitoring Element. However, the transport of the monitoring data from the Monitoring Element to
the Violation Detection system is not part of the Monitoring API, but is realized with the IPFIX
protocol [5].

The Monitoring API is based on and realized with help of the Netconf protocol [6]. The following
figure shows the relation between Violation Detection, Monitoring API and Monitoring Element.
Netconf is employed for configuration and reconfiguration tasks while IPFIX is used for transporting
the monitoring data to the Violation Detection.

Violation Detection IPFIX Collector Netconf Client

Figure 4: Relations between Violation Detection, Monitoring Element and Monitoring API

According to the abstract model of an IPFIX device as described in [7], the functionality of the
Monitoring Element is divided into metering processes and exporting processes as shown below. In
addition, an aggregation process is included as proposed in an Internet draft on IPFIX aggregation
(work in progress).

Monitoring Data Monitoring API
(IPFIX)(Netconf)

Network Device
(Server) Monitoring Element IPFIX Device

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 19

to Violation Detection Systems (IPFIX Collectors)

Figure 5: Metering, Exporting and Aggregation Process

A metering process gathers and optionally preprocesses monitoring data observed at an observation
point (e.g. network interface). An exporting process transfers the monitoring data issued by one or
more metering processes to the Violation Detection with help of the IPFIX protocol. Optionally, an
aggregation process can be employed to compress IPFIX data in order to reduce the amount of
monitoring data as well as the processing requirements at the Violation Detection.

Depending on the nature of the Monitoring Device, monitoring data consists of either IP flow records,
records of metaflows, sampled packets or some other kind of information. Accordingly, the
configurable parameters of the metering process also differ. In contrast, the configuration of the IPFIX
exporting processes is identical for all kinds of monitoring data. It is possible to link metering
processes of the different kinds to a single exporting process, i.e. an exporting process may export IP
flow records and sampled packets at the same time. However, different templates have to be defined
and used for the data export.

An aggregation process aggregates IP flow records provided by one or more associated metering
processes and merges them into a single metaflow record. Like normal IP flow records, metaflow
records are handed over to an exporting process for transfer to the Violation Detection. Though, the
export of IP flow records and metaflow records usually requires different templates. Aggregation of
sampled packets is not supported.

The remainder of this chapter is structured as follows. Sections 5.1 and 5.2 provide an introduction to
the Netconf protocol and a short reference on Netconf operations. Section 5.3 specifies the XML
structure of configuration data used for the Monitoring Elements. The usage of the Netconf based
Monitoring API is finally illustrated with examples in section 5.4.

5.1 Netconf protocol

5.1.1 General Information

The IETF Network Configuration (Netconf) working group [8] is currently standardizing a protocol
for the management and configuration of network devices (RFC expected at the beginning of 2005).
Netconf protocol distinguishes between configuration data that can be uploaded, manipulated and
retrieved from the device, and system state information that can be queried in read-only mode only.
Netconf uses Extensible Markup Language (XML) for message encoding which allows using common
known XML libraries and tools for message processing.
5.1.2 Remote procedure calls and operations

EP

MP

Monitoring
Element

EPEP

MP MP

(IPFIX Device)
AP

EP: Exporting Process MP: Metering Process AP: Aggregation Process

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 20

Netconf protocol is a client-server protocol which operations follow the style of remote procedure calls
(RPCs). A message that the client sends to the network device represents an RPC invoking one out of
a small set of basic operations. If the operation is successful, the network device responds sending a
reply message containing a simple acknowledgement or some more data. In case of an error, the reply
includes an error message. Netconf operations can be considered an API function set exposed by the
network device.

While the set of operations is specified by the Netconf protocol, the actually transferred data is not. In
terms of an API, this corresponds to function declarations that leave the parameter part open. This
makes Netconf a very flexible protocol since the data can be defined according to the usage
requirements. On the other hand, this leads to individual, vendor and device-specific solutions. There
are some attempts in the IETF to define a Netconf data model that, like the information models and
SMI definitions in SNMP-based network management, defines the structure and semantic of the
exchanged data. However, it seems that there is no consensus yet, and no IETF draft has been
published on this issue to date.
5.1.3 Transport protocol requirements

The implementation of the Netconf protocol is not restricted to a specific transport protocol. However,
the used transport protocol should meet the following requirements:

• The transport protocol has to provide for one or more multiple connection-oriented sessions.
• Since Netconf does not support any security mechanisms, the transport protocol has to provide

necessary mechanisms for authentication, authorization, data integrity, privacy etc.
The Netconf working group has elaborated three alternative use cases that build Netconf either on SSH
(secure shell), BEEP (Blocks Extensible Exchange Protocol) [9] or SOAP (Simple Object Access
Protocol) [10].
5.1.4 Configuration datastores

Netconf configuration operations are performed on so-called configuration datastores. A configuration
datastore represents a complete set of configurable parameters of the managed device. A device has to
provide at least the <running> configuration datastore that holds the currently active configuration.
Additional datastores may be supported to define a specific <startup> configuration for the device or
to store a <candidate> configuration that allows to edit a configuration step by step and commit it later
to the <running> configuration as a whole.
5.1.5 Netconf capabilities

Netconf specification is divided into the mandatory base functionality of the protocol and optional
protocol extensions. When a new Netconf session is established, the two peers exchange <hello>
messages that include information about their capabilities, i.e. the protocol extensions each of them
supports.

Some proposed protocol extensions are:

• Writable running: The device supports direct writing to the <running> configuration datastore.
• Candidate configuration: The device supports the <candidate> configuration datastore.
• Rollback on error: The device allows automatically returning to the previous working

configuration if the reconfiguration fails.
• Validate: The device can be instructed to check a configuration for syntactical and semantic

errors before applying the configuration to the device.
• Distinct startup: A <startup> configuration datastore exists that defines the startup

configuration of the device.
• URL: The device is able to upload and download the content of a configuration datastore to

and from an external server.

5.2 Netconf Operations

An RPC sent from the client to the network device consists of one or more operations. Netconf
specifies nine mandatory operations that have to be supported by the device, and some additional
optional operations that may be supported by devices with special capabilities. The operations are

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 21

briefly described in the following subsections. For further information refer to [6].
5.2.1 <get-config>

The <get-config> operation is used to retrieve all or parts of a specified configuration.
Parameters:

• source (mandatory): configuration datastore to be queried
• filter (optional): filter that identifies the portions of the configuration to be retrieved

Possible content of RPC reply:
• <data> element with the queried configuration data, or
• <rpc-error> element including some error information

5.2.2 <edit-config>

The <edit-config> operation changes a configuration datastore by creating, deleting or replacing all or
parts of it. An optional operation attribute may be used to specify distinct actions for different
elements of the datastore.
Parameters:

• target (mandatory): configuration datastore to be queried
• default-operation (optional): default action if operation attribute is missing
• test-option (optional): indicates if the configuration is to be validated before being written to

the datastore (this option only applies to devices that support configuration validation)
• error-option (optional): specifies how to proceed on error
• config (mandatory): contains the configuration data

Possible content of RPC reply:
• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information

5.2.3 <copy-config>

The <copy-config> operation copies the entire content of a configuration datastore to another
configuration datastore. For example, a <candidate> configuration can be copied to the <running>
configuration. If supported, configuration datastores can be also copied from and to external URLs.
Parameters:

• source (mandatory): source configuration datastore of the copy operation
• target (mandatory): target configuration datastore of the copy operation

Possible content of RPC reply:
• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information

5.2.4 <delete-config>

The <delete-config> operation deletes a content of a configuration datastore. The <running>
configuration cannot be deleted. If supported, the operation may also be applied on an external
configuration datastore identified by an URL.
Parameters:

• target (mandatory): configuration datastore to be deleted
Possible content of RPC reply:

• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information

5.2.5 <lock>

The <lock> operation locks a configuration datastore prohibiting write access by other clients.
Parameters:

• target (mandatory): configuration datastore to be locked
Possible content of RPC reply:

• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information, e.g. that the lock is already held by

another client

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 22

5.2.6 <unlock>

The <unlock> operation releases a previously locked configuration datastore.
Parameters:

• target (mandatory): configuration datastore to be unlocked
Possible content of RPC reply:

• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information

5.2.7 <get>

The <get> operation is used to retrieve system configuration and state information.
Parameters:

• filter (optional): filter that identifies the portions of the configuration and state information to
be retrieved

Possible content of RPC reply:
• RPC reply containing a <data> element with the queried information, or
• <rpc-error> element including some error information

5.2.8 <close-session>

The <close-session> operation requests the termination of the Netconf session.
Parameters:

• none
Possible content of RPC reply:

• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information

5.2.9 <kill-session>

The <kill-session> operation kills another Netconf session. The nature of the session identifier
parameter is not explained any further.
Parameters:

• session-id: identifier of the session to be killed
Possible content of RPC reply:

• RPC reply containing an <ok> element as an acknowledgement, or
• <rpc-error> element including some error information

5.3 Configuration of Monitoring Elements using Netconf

The Monitoring Elements export a Netconf interface for system configuration and management. The
Monitoring API thus consists of Netconf operations and an XML representation for the monitoring-
specific configuration and management data.

As mentioned in section 5, the functionality that has to be provided by Monitoring Elements and
Devices can be divided into metering processes, aggregation processes, and exporting processes. The
parameters that are needed to configure a metering process depend on the kind of monitoring data and
the applied metering method. On the other hand, the configuration of an exporting process always
comprises the same set of parameters, i.e. it does not dependent on the kind of monitoring data that is
exported. Besides the configuration of exporting processes, the configuration of metering processes for
IP flow metering, aggregation processes, and packet sampling is specified in the scope of this
deliverable.
The Monitoring API uses a device-independent XML representation of configuration data. The
following subsections provide a summary description of the used XML structure, while a formal
specification using XML Schema description language can be found in appendix 1.
5.3.1 Root element <monitorConfig>

The root element <monitorConfig> is an envelope for subelements dedicated to the configuration of
metering processes, aggregation processes, sampling processes, and exporting processes. Further

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 23

subelements are used to define lists of data and option templates that can be used by the exporting
processes of the Monitoring Element.
5.3.2 Common types

This subsection briefly describes types that are not directly related to any kind of process.
• operation_type is a enumeration type used for the operation attribute. It is used in the context

of <edit-config> operations. The usage of the operation attribute is explained in section 5.3.7.
• ipFilter_type contains the parameters of a IP packet filter. Types for other kinds of packet

filters can be defined in an analogous manner. Filters are used in the context of metering and
sampling process configuration.

• dataTemplate_type and optionTemplate_type allow to specify data templates and option
templates used by the Monitoring Element.

5.3.3 Exporting process configuration types

The configurable parameters of an exporting process are described in [7]. The configuration
parameters of the similar Netflow Version 9 protocol from Cisco can be found in the Netflow MIB
[12]. Within the Monitoring API, the exporter_type is used for the configuration of an IPFIX exporting
process. It covers the following settings:

• List of collectors the monitoring data is sent to.
• Identifier lists of the metering processes, sampling processes, and aggregation processes which

monitoring data is exported.
• Maximum time to wait for more monitoring data to fill up an IPFIX packet.
• Parameters for periodical resending of templates to the collectors. (Note: If UDP is used as

transport protocol, templates received by the collectors only have limited lifetime and have to
be refreshed.)

5.3.4 IP flow metering process configuration types

The configuration of an IP flow metering process (meter_type) consists of the following settings
[7][12]:

• Interface (observation point) of the monitoring device from where the monitoring data is
captured.

• Time interval for periodical export of statistics of ongoing IP flows. This allows adapting the
number of exported records per flow according to the needs of the recipients, i.e. the Violation
Detection system.

• Time to wait until a flow expires when no more packets are observed. Upon expiration, a flow
is removed from the list of ongoing flows.

• Packet filters for the selection of captured packets passed to the metering process.
5.3.5 Aggregation process configuration types

An aggregation process receives IP flow records from one or more metering processes and merges
them into metaflows. The aggregation is controlled by aggregation rules. Some are implicitly defined
while others can be configured.
Implicit rules concern:

• Timestamps (TS): TS of the first seen packet and TS of the last seen packet will be adopted to
reflect the according meanings for the metaflow.

• Byte, packet, and connection counters: These counters are added to reflect the size of the
metaflow and the number of connections merged into this metaflow.

Explicit rules concern the remaining attributes of a flow record. An explicit rule indicates the flow
attributes used in the metaflow record and specifies a match pattern and an optional “keep” parameter
for each of them. Flow records which attributes match all of the specified constraints are merged into
one or more metaflows.

A match pattern can either be a single value, a range of values, or an “any” wildcard. A range of
values can be specified for IP addresses and port lists:

• IP address range using a netmask: address/mask, e.g. 10.10.11.0/27

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 24

• TCP/UDP port list and range: port1, port2, port3-port4, e.g. 80,443,8080-8090

If the “keep” parameter is set for a specific flow attribute, the aggregation process results in multiple
metaflows with different values for the corresponding attribute. Thus, flow records with different
values for this attribute count for different metaflows. A single flow record may match several explicit
rules. As a consequence, it counts for various metaflows.

The configuration of aggregation processes, provided by the aggregation_type, includes the following
settings:

• List of metering processes which data records are to be aggregated.
• Set of explicit rules, each defining a list of flow attributes with associated match patterns and

granularity parameters.
5.3.6 Packet sampling configuration types

The IETF Packet Sampling (PSAMP) working group specifies an information model [11] and a MIB
[13] that include the configurable parameters of sampling processes. Based on this, the Monitoring
API provides the following settings in the sampler_type:

• Interface (observation point) of the monitoring device from where the monitoring data is
captured.

• Applied sampling method and the settings of the corresponding parameters. The types
selectAll_type, countBased_type, timeBased_type, randOutOfN_type, uniProb_type,
nonUniProb_type, and flowState_type include the parameters of specific sampling algorithms.
More information about sampling methods and parameters can be found in [11][13].

5.3.7 Usage of the operation attribute

As mentioned in section 5.1.2, <edit-config> supports the usage of an optional operation attribute that
indicates how the provided configuration data is to be inserted into the configuration datastore of the
device. The operation attribute can be used with the following types: meter_type, sampler_type,
aggregator_type, exporter_type, dataTemplate_type, optionTemplate_type, rule_type, collector_type,
and ipFilter_type. Several instances of these elements may appear in the configuration datastore. In
order to identify which instance an operation refers to, the usage of an id attribute is required.

If used with meter_type, sampler_type, aggregator_type, exporter_type, dataTemplate_type and
optionTemplate_type, the settings of the operation attribute have the following meaning:

Setting Meaning Configuration data
Merge Default setting, apply the default

operation indicated by <edit-
config> and the individual
settings of subelements if
available. If no other operation is
indicated replace any existing
elements and create non-existing
ones.

Configuration data needs not
to be complete.

replace Delete indicated instance and
create new instance with the
given configuration data.

Configuration data must be
complete.

create Create new instance with given
configuration data.

Configuration data must be
complete.

delete Delete instance (identified by id
attribute).

Configuration data is ignored.

If used with collector_type, rule_type, and ipFilter_type, the operation attribute is ignored unless the
operation attribute of the encompassing meter, sampler, aggregator or exporter element is set to
merge. In this case, the meaning is as follows:

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 25

Setting Meaning Configuration data
Merge Same as replace. Same as replace.
replace Delete indicated instance und

create new instance with given
configuration data.

Configuration data must be
complete.

create Create new instance with given
configuration data.

Configuration data must be
complete.

delete Delete instance (identified by id
attribute).

Configuration data is ignored
(can be omitted).

5.4 Examples

The following examples illustrate how the Netconf messages in a typical configuration scenario look
like. Note that “diadem-firewall.org/MonitoringAPI” is the name of the namespace all the elements
and types mentioned above belong to.

5.4.1 Example: Configuration of an IP flow exporter
The following Netconf message is a request for the configuration of the current running configuration
datastore, sent from the client to the network device. The configuration comprises a metering process,
an aggregation process, an exporting process, and two templates:

• The metering process gathers statistics about TCP flows with destination 10.0.0.0/8.
• The aggregation process aggregates flow records with destination port 80 and destination

10.0.0.0/23, while maintaining different metaflow records per destination address. For
example, two flows going to 10.0.0.10:80 but with different source addresses are merged into
a metaflow with destination 10.0.0.10. A third flow going to 10.0.0.11:80 is counted in a
separate metaflow with destination 10.0.0.11.

• The exporting process exports the flow records of the metering process and the metaflow
records of the aggregation process to two distinct collectors, using UDP and SCTP as transport
protocol for the IPFIX messages.

• The first template contains fields for source address (IPv4), source port, destination address
(IPv4), destination port, and the packet counter. It is used for the export of flow records issued
by the metering process. The second template contains destination address (IPv4), destination
port, packet counter. It is used for the metaflow records of the results of the aggregation
process.

<rpc message-id=“101“ xmlns=“urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
 <source>
 <running />
 </source>
 <config>

<monitorConfig xmlns="diadem-firewall.org/MonitoringAPI">
 <meters>
 <meter id="1" operation="create">
 <!-- metering process 1 maintains statistics about
 all TCP flows going to 10.0.0.0/8,
 flow records are exported using template 1 -->
 <templateId>1</templateId>
 <interface>eth0</interface>
 <exportPeriod>500</exportPeriod>
 <flowExpirationTime>10</flowExpirationTime>
 <filters>
 <ipFilter id="1">
 <dstAddress>10.0.0.0</dstAddress>
 <dstAddressLength>8</dstAddressLength>
 <protocol>6</protocol>
 </ipFilter>
 </filters>
 </meter>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 26

 </meters>
 <aggregators>
 <aggregator id="1" operation="create">
 <!-- aggregation process 1 accumulates flows measured
 by metering process 1 with dst port number 80, separated by
 destination address in the range 10.0.0.0/23,
 flow records are exported using template 2 -->
 <meterIds>1</meterIds>
 <rules>
 <rule id="1">
 <templateId>2</templateId>
 <match>
 <type>11</type>
 <pattern>80</pattern>
 </match>
 <match>
 <type>12</type>
 <pattern>10.0.0.0/23</pattern>
 <keep />
 </match>
 </rule>
 </rules>
 </aggregator>
 </aggregators>
 <exporters>
 <exporter id="1" operation="create">
 <!-- exporting process 1 exports records from metering
 process 1 and aggregation process 1 to two distinct collectors -->
 <collectors>
 <collector id="1">
 <address>10.0.0.1</address>
 <port>1234</port>
 <protocol>udp</protocol>
 </collector>
 <collector id="2">
 <address>10.0.0.2</address>
 <port>1234</port>
 <protocol>sctp</protocol>
 </collector>
 </collectors>
 <meterIds>1</meterIds>
 <aggregatorIds>1</aggregatorIds>
 <dataSendTimeout>500</dataSendTimeout>
 <templateTimeout>10</templateTimeout>
 <templateRefreshRate>1000</templateRefreshRate>
 </exporter>
 </exporters>
 <dataTemplates>
 <dataTemplate id="1">
 <!-- template 1 contains source address (IPv4), source port,
 destination address (IPv4), destination port, packet counter -->
 <field>
 <type>8</type>
 </field>
 <field>
 <type>7</type>
 </field>
 <field>
 <type>12</type>
 </field>
 <field>
 <type>11</type>
 </field>
 <field>
 <type>2</type>
 </field>
 </dataTemplate>
 <dataTemplate id="2">

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 27

 <!-- template 2 contains destination address (IPv4), destination
 port, packet counter -->
 <field>
 <type>12</type>
 </field>
 <field>
 <type>11</type>
 </field>
 <field>
 <type>2</type>
 </field>
 </dataTemplate>
 </dataTemplates>
</monitorConfig>

 </config>
</edit-config>
</rpc>

The configuration request is acknowledged by the Monitoring Element with a positive response after
successful configuration of the device:

<rpc-reply message-id=“101“ xmlns=“urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok />
</rpc-reply>

5.4.2 Example: Reconfiguration of a packet sampler
The following Netconf message requests the initialization of a new sampling process for time-based
sampling of packets with destination address 10.0.0.5, the addition of a collector to the collector list of
the exporting process, and a new data template for the export of sampled packets.

<rpc message-id=“102“ xmlns=“urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
 <source>
 <running />
 </source>
 <config>

<monitorConfig xmlns="diadem-firewall.org/MonitoringAPI">
 <samplers>
 <sampler id="1" operation="create">
 <!-- sampling process 1 applies time-based sampling on
 packets with destination address 10.0.0.5 -->
 <templateId>3</templateId>
 <interface>eth0</interface>
 <method>
 <timeBased>
 <interval>
 123
 </interval>
 <spacing>
 123
 </spacing>
 </timeBased>
 </method>
 <filters>
 <ipFilter id="1">
 <dstAddress>10.0.0.5</dstAddress>
 <dstAddressLength>32</dstAddressLength>
 </ipFilter>
 </filters>
 </sampler>
 </samplers>
 <exporters>
 <exporter id="1" operation="merge">
 <!-- sampling process 1 is associated to exporting process 1,
 and a new collector is added -->
 <collectors>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 28

 <collector id="3" operation="create">
 <address>10.0.0.3</address>
 <port>1234</port>
 <protocol>tcp</protocol>
 </collector>
 </collectors>
 <samplerIds>1</samplerIds>
 </exporter>
 </exporters>
 <dataTemplates>
 <dataTemplate id="3" operation="create">
 <!-- template 3 contains packet sequence number and sample -->
 <field>
 <type>1025</type>
 </field>
 <field>
 <type>1026</type>
 </field>
 </dataTemplate>
 </dataTemplates>
</monitorConfig>

 </config>
</edit-config>
</rpc>

In this example, the Monitoring Element responds with an error message because it does not support
time-based packet sampling (the format of error messages is described in [5]):

<rpc-reply message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>OPERATION_NOT_SUPPORTED</error-tag>
 <error-severity>error</error-severity>
 <error-message>Sampling method timeBased not supported.</error-message>
 </rpc-error>
</rpc-reply>

6 Firewall API

Firewall API enables manipulation of firewall rules on multiple firewall implementations. Besides it
can support routing tables and QoS manipulation as response mechanisms. It can be understood as a
thin layer above the current/traditional firewall capabilities.

The basic ingredients of the API are a group, a rule and a selector. The group is a set of rules or/and
groups. The group defines the manipulation of the network traffic that flows through a group. In some
sense the group is similar to the UNIX file system structure where the groups correspond to directories
and the rules to files. When the traffic flows through a group only the rules in the group are evaluated.
The matched traffic by the selector can be redirected to a specific group if desired. Traditionally the
groups are related to processing of the IP traffic and are grouped in groups like input, output and
forward. In the sense of this API the groups can also be mapped to a Firewall Device or Firewall
Element. Specified group operations, include select, create, flush and list. Abstract specification of the
group is:

Group <group>:<group>

The <group> is a string. The only limitation to the name is that it has to be unique in the certain group.
In contrast to the rules, as described below, groups enclosed in other groups, do not have any specific
priority. The ruleid of the group is then reserved and equals a zero. The API supports three global
variables: a ROOT_GROUP, a DEFAULT_GROUP and a CURRENT_GROUP. The ROOT_GROUP
denotes a Firewall Element. The DEFAULT_GROUP is a default group for processing network
traffic, such as a Firewall Device. The CURRENT_GROUP denotes a selected group by select

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 29

function.

The rule defines the manipulation of a packet or a flow. The rule consists of a selector, selector action,
log action and the time of the rule validity. Abstract specification of the rule is:

Rule <rule>:<selector> <selector_action> <log_action> [“time”]

Specified rule operations, we will call them the rule actions, are insert, append and delete. When the
rules are created in the context of a group a sortable and unique rule identifier <ruleid> is assigned to
the rule. Rule identifier is used to be able to insert or delete a rule at certain position in the group. The
rule identifiers are positive integer numbers grater than zero.
The selector is a set of packet specifications that enables classification of a packet. Abstract syntax for
the selector is:

Selector <selector>:<<selector 1> ... <selector n>>

The supported selectors are:
• source IP address/hostname: source_ip
• destination IP address/hostname: dest_ip
• the interface to match: interface
• the protocol to match: 'tcp' / 'udp' / 'icmp',... Can be a string or a number: protocol
• the source port of the packet: source_port
• destination port of the packet: dest_port
• TCP flags: tcp-flags:'fin', 'syn', 'rst', 'push', 'ack', 'urg', 'ecn', 'cwr': tcp-flags
• ICMP type: icmp-type: string or a code: icmp-type
• state: state: 'related', 'new', 'established', 'invalid': state

Source IP addresses can be host addresses or network address as combination of address and network
mask. The interface denotes the packet incoming or outgoing interface. The source and destination
ports can be numbers or expressions similar to those defined in classifier API in section 7.2. The
protocol state matches the new state if the connection has been started, established for already known
connection, related matches the packets that are not a part of a connection but related to it and the
invalid matches the packets not related to any connection. The selector supports a wildcard matches
that match for example any source or destination address, port, etc.

The operation on selected packet is a selector action. Currently specified selector actions are:
• accept the packet: pass
• drop the packet: drop
• return from the group: return
• reject the packet and optionally return icmp-error or TCP-reset: reject [<icmp-error>]
• Redirect the packet to the group or address: redirect <queue> | <group> | <ip_address> [

protocol] [port]
• Rate limit the packet flow: ratelimit <packets/s>|<kb/s>|<mb/s>

The selector action pass accepts the packet and the drop action discards the packet. The redirect action
redirects selected packets either to user space on Firewall Devices that support the action, group or to
specific IP or network address. This action can be also used in conjunction with Module environment
as described in [3] to deliver the packets to the code modules. The ratelimit action supports rate
limiting of selected traffic to per packets, kilo or mega bytes per second.

Every rule can specify the log_action that enables logging of selected packets that pass the Firewall
Device. The log action is specified as: log [log_level] [log_mark][log_rate]. The log level specifies
the level of logging, like 'info', 'notice', 'warning', 'err', 'crit', 'alert' or 'emerg', log mark marks the log
records and the log rate specifies the rate at which the logging records will be stored.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 30

6.1 Operations on a group

Group_select

This function selects a group.

Syntax:

group_select(<group_name>)

Output:

The return values should follow the POSIX standard for appropriate file system operation (cd)
in a meaningful way.

Input:

<group_name> is the name of the group being selected.

Notes:

The select must update the value of the CURRENT_GROUP.

Group_create

This function creates new group.

Syntax:

group_create(<group_name>)

Output:

The return values should follow the POSIX standard for appropriate file system operation
(mkdir) in a meaningful way.

Input:

<group_name> is the name of the group being created. Group name can be also composed
from more than one group followed by a new group.

Notes:

Certain firewalls have a set of pre defined groups, like iptables input/otput/forward. These
groups should be created automatically and treated transparently by the API. If the group
names can be composed, the default separator for the system should be defined. A special and
global API variable can be used to define a separator. Additionally the function should support
besides taking a group name as an argument to take a file as an argument. The file can contain
a nested descriptions of all sub groups and their rules. The description itself should be as
implementation independent as possible.

Group_list

This function returns the set of rules and groups in the group together with their ids.

Syntax:

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 31

group_list(<group_name>)

Output:

The function returns a list of rules <rule> and rule identifiers <ruleid>. Other return values
should follow the POSIX standard for appropriate file system operation (ls) in a meaningful
way.

Input:

<group_name> is the name of the group being listed.

Notes:

 The recursive operations on the sub groups will be studied/added to the API if needed.

Group_flush

This function flushes all the rules in the group and deletes empty groups.

Syntax:

group_flush(<group_name>)

Output:

Other return values should follow the POSIX standard for appropriate file system operation
(rm) in a meaningful way.

Input:

<group_name> is the name of the group being flushed

Notes:

6.2 Rule operations

Rule_insert

This function adds a rule to a CURRENT_GROUP.

Syntax:

rule_insert(<position>, <rule>)

Output:

The output of the function is a <ruleid>. Negative value is returned otherwise.

Input:

The <position> is the position of the rule after which the rule will be inserted. The <rule> is
of a form as defined in section 0.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 32

Example:
 The following rule is inserted after the 10 rule in the current group.

rule_insert(10,protocol=’tcp’ state=’new’ redirect.group=”TCP_SYNC”)

Notes:

Rule_delete

This function deletes a rule in a CURRENT_GROUP.

Syntax:

rule_delete(<ruleid>)

Output:

The function returns the rule identifier of the rule before it, if successful, and if there is no rule
before it, it returns 0. Negative value is returned otherwise.

Input:

The <ruleid> is the rule identifier of the rule to be deleted.

Example:

 The rule with rule identifier 12 is deleted.

rule_delete(12)

Notes:

Rule_insert and rule_delete can be used to modify certain rule at certain position.

Rule_append

This function appends a rule in a CURRENT_GROUP.

Syntax:

rule_append(<rule>)
Output:

The function returns the rule identifier <ruleid> of the rule. Negative value is returned
otherwise.

Input:

The <rule> is the rule to be appended.

Example:

rule_append(protocol='tcp' state='related' accept)

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 33

6.3 Communication in between Firewall Element and Firewall devices

The communication between a Firewall Element and the Firewall devices is part of the functionality
implemented by the Firewall API. Multiple implementations are possible, because the API can support
multiple Firewall Devices and such communication can be implemented in different ways.

We are evaluating Netlink protocol for communication of the Firewall Element with open firewall
devices. Netlink is a Linux kernel protocol that provides datagram oriented service for communication
in between user space processes and the Linux kernel. It consists of a standard socket based interface
for user processes and an internal kernel API for kernel modules. The Netlink defines a family of
protocols that enable a user to control various aspects of the kernel, like routing, IPv4 and IPv6
firewall, QoS, IP networking parameters and arp tables. As such is an excellent tool to enable the FE
to access the kernel response capabilities and offer them through Firewall API as response
mechanisms. Netlink, its protocols and some IP service templates are further described in [15].
Commercial firewalls and routers should be also supported either over CLI or, if available, on the top
of functionality/protocol supported by selected device.

To enable the Firewall API to connect to a device the following function is used:

attach_device

This function starts the communication in between FE and FD. It enables specification of the protocol
to be used for communication.

Syntax:

attach_device(ip_address, protocol)

Output:

The function returns a positive value on success and negative otherwise.

Input:

The input parameters are IP address of the device and the protocol to be used for
communication.

Example:

 Start communication with local kernel as Firewall Device.

attach_device(127.0.0.1, netlink)

Notes:

If the Firewall Element and the Firewall Device are closely coupled as in previous example the
IP address of the device is its loopback address.

detach_device

This function ends the binding in between the Firewall Element and attached device. The function can
be used to set the device in predefined or expected state.

Syntax:

detach_device(ip_address)

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 34

Output:

The function returns a positive value on success and negative otherwise.

Input:

The input parameter is IP address of the device.

Example:

 Detach local kernel as Firewall Device.

detach_device(127.0.0.1)

7 Classifier API

This paragraph focuses on the further definition and refinement of the abstract control API for the
Classifier Engine (CE), which has already been defined in D2 [2]. The described functions should be
used for the communication between the Firewall Element and the Classifier Engine. The general
structure of the abstraction layers is shown in Figure 6. Here, the upper layer software on a Firewall
Element communicates with the Classifier Engine through the Classifier API. This API provides
necessary functionality to configure the Classifier Engine and to control the packet-filter rule-set.

Classifier API

Upper Layer Software

OS Kernel

PCI Bus

Classifier Engine

Figure 6: Layer model

The functions of the CE API are split in three categories: rule-specific functions, the search operation
itself, and potentially a setup function. In the following paragraphs these functions are described in
more detail.

7.1 Rule-specific functions

The category of rule-specific functions is responsible for dealing with the packet-filter rule-set. During
the initialisation of the classifier engine these functions are used to transfer the current rule set to the
CE. At runtime, these operations are necessary to perform dynamic updates of rules. There are four
basic functions, which are supported:

• insert rule,
• delete rule,
• append rule, and
• modify rule.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 35

Each of these functions can be mapped directly to a call of the firewall API. Before the rule specific
functions can be explained in more detail we give an abstract description of a packet-filter rule.

7.2 Abstract packet-filter Rule description

Similar to the definition of a rule in the firewall API, a packet-filter rule R is a tuple of F components.
While every component i, 0 < i < F, is a regular expression on the packet header field i, the last
component of a packet-filter rule specifies the action or also called target. The action defines what to
do with the packet that matched the current rule. The rule is expected in an according data structure.

Abstract syntax:

Rule R: <<component 1> … <component F>><action>

The regular expressions allowed for a component are:

• <address> / <mask>

• <operator> <number>

• <number>

• <interface>

• <protocol>

• <tcp-flag>

• <icmp-type>

• <wildcard>

The address has to be within the range of the set of allowed IP addresses and can specify certain
source or destination IP addresses. The mask can be given in decimal netmask notation or as the
number of ones in the network mask. Possible examples for the address/mask combination would be:
 192.168.0.0 / 255.255.255.0

 192.168.0.0 / 24

The supported relations on the components are:

• equal: eq

• less then: lt

• greater then: gt

• range: rg <number> : <number>

Examples for those operator/number combinations would be:

• rg 20:21
• gt 1023

The interface is the input and/or output interface, such as eth0 or eth1. The protocol is the transport-
protocol number in the IP header. Allowed TCP flags are fin, syn, rst, push, ack, urg, ecn, cwr. For
ICMP it is possible to give the specific message type and if wanted the according code. Please note
that states are not supported as packet-filter rule components.

In our examples, the syntax of the wildcard is: *

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 36

Further regular expressions for components depend on the number and the type of the fields that have
to be matched to packet header fields. Possible further matches could be done on

• Start-of-connection (ACK) information for TCP packets
• MAC address

The last part of a rule is the action or target which defines the operation that has to be performed on
the packet. Currently the following actions, listed in table, are supported:

Action Description
Drop A packet that matches this rule is dropped

immediately
Accept A matching packet is accepted
Log Drop The kernel logs some information on the matching

packet and drops it immediately.
Log Accept The kernel logs some information on the matching

packet and accepts it.
Other Actions: TBD TBD
User defined Actions > 50

7.3 Insert rule

This function is used to dynamically insert a new packet-filter rule at runtime, or for setup purposes to
load one or several initial filter rule sets. The ability to handle more than one packet-filter rule-set is an
optional feature, which will not be implemented in our CE prototype. The insert function takes as input
the new rule, a priority, and the number of the rule set in which this rule should be inserted. It returns
the number of the rule in the rule set, the ruleID. If only one rule set is supported on the CE the
<rule_set> parameter is obsolete.

Abstract syntax:

(<ruleID>, <error code>) = insert_rule (<priority>, <rule>, <rule_set>)

Output:

• <ruleID>:
After inserting the rule in the current rule set, based on the priority given in the insert
operation the rule gets a ruleID. This ruleID represents the position of the rule in the list of the
updated rule set. It is used as a reference for this specific rule, for example for future
modifications or updates of this rule.

• <error_code> :
If the insertion was not successful an error code is returned, otherwise a success code is
returned.

Input:
• <priority>:

This gives the priority of the rule within the current rule set and according to this priority the
ruleID is assigned.

• <rule>:

The packet-filter rule is defined according to the description above.

• <rule_set>:

Number of the rule set in which the rule has to be inserted. This parameter is obsolete in the
default case where only one rule set is supported.

Example: (Only for the default cause, where one rule set is supported)

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 37

insert_rule(10, 192.168.0.0/255.255.255.0 152.163.80.1/0.0.0.0 gt 1023 * Drop)

7.4 Delete rule

The function delete_rule takes as input the ruleID of the rule that has to be deleted and deletes the
whole rule from the current rule set.

Abstract syntax:

<error_code> = delete_rule (<ruleID>, <rule_set>)
Output:

• <error_code> :
If the deletion was not successful an error code is returned, otherwise a success code is
returned.

Input:

• <ruleID>:
The ruleID is the number of the rule which has to be deleted from the current rule set. This
number was calculated at the time of the insertion of the rule and given back then as a result.

• <rule_set>:

Number of the rule set in which the rule has to be deleted. This parameter is obsolete in the
default case where only one rule set is supported.

Example: (Only for the default cause where one rule set is supported)

delete_rule(10)

7.5 Append rule

The function append_rule appends a new packet-filter rule at the end of the current rule set. The
appended rule has therefore the lowest priority. This operation could be substituted by the function
insert_rule with lowest priority.

Abstract syntax:

(<ruleID>, <error code>) = append_rule (<rule>, <rule_set>)
Output:

• <ruleID>:
After appending the rule at the bottom of the current rule set, the rule gets a certain ruleID.
This ruleID represents the position of the rule in the list of the now updated rule set. It is used
as reference for this specific rule for example for future modifications or updates of this rule.

• <error_code> :
If appending was not successful an error code is returned, otherwise a success code is
returned.

Input:

• <rule>:

The packet-filter rule is defined according to the description above.

• <rule_set>:
Number of the rule set where the rule has to be appended. This parameter is obsolete in the
default case where only one rule set is supported.

Example: (Only for the default cause, where one rule set is supported)

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 38

append_rule (192.168.0.0/255.255.255.0 152.163.80.1/0.0.0.0 * * Accept)

7.6 Modify rule

The function modify_rule overwrites an existing rule in the current rule set. This operation could be
substituted through the combination of the two functions delete_rule and insert_rule.

Abstract syntax:

<error_code> = modify_rule (<ruleID>, <rule>, <rule_set>)

Output:

• <error_code> :
If the modification was not successful an error code is returned., otherwise a success code is
returned.

Input:

• <ruleID>:
The ruleID is the number of the rule which has to be modified in the current rule set. This
number was calculated at the time of the insertion of the rule and given back then as a result.

• <rule>:

The packet-filter rule is defined according to the description above.

• <rule_set>:
Number of the rule set in which the rule has to be modified. This parameter is obsolete in the
default case where only one rule set is supported.

Example: (Only for the default cause, where one rule set is supported)

modify_rule (11, 192.168.0.0/255.255.255.0 152.163.80.1/0.0.0.0 * * Accept)

7.7 Search function

The search function initiates the search for matching rules on the CE. Based on the input fields, such
as source address, destination port number, etc., which have to be extracted from the packet header,
the CE performs the packet classification. The returned result is the number of the matching rule, the
so called <ruleID>, and the action or target of the matching rule. The CE expects already parsed
header fields as inputs. Similar to the rules, the header fields are expected to be passed in a data
structure.

Abstract syntax:

(<ruleID>, <error code>, <action>) = search (<header field 1> …<header field N>,
<rule_set>)

Output:

• <ruleID>:
The ruleID is the number of the matching rule in the current rule set. This number
was calculated at the time of the insertion of the rule and given back then as a result.

• <error_code> :
If the search was not successful an error code is returned, otherwise a success code
is returned.

• <action>: The currently supported actions are listed in the table above.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 39

Input:

• <header field n>:
The header field is a part of the packet header, which is used for the match against
the rules in the current packet-filter rule set. The width depends on the type of the
specific field.

• <rule_set>:
Number of the rule set where the search has to be performed. This parameter is
obsolete in the default case where only one rule set is supported.

Examples for commonly used header fields are:

• Source address, 32 bit
• Destination address, 32 bit
• Transport-protocol number, 8 bit
• Source port, 16 bit
• Destination port. 16 bit
• SYN bit

Example: (Only for the default cause, where one rule set is supported.)

search (192.163.190.69 152.163.80.1 1024 tcp)

Notes:

This function is used internally in the Firewall Element to initiate the classification of a packet.

7.8 Setup function

The setup function is used for the initialization of the CE and the according PCI driver.

Abstract syntax:

<error_code> = setup (<packet header start> <offset> <header field 1> <width 1>
…<header field N> <width N>)

Output:
• < error_code > :

If the setup was not successful an error code is returned.
Input:
The whole input is expected to be in a certain data structure.

• <packet header start>:
This is the position of the first header field in memory, i.e. the pointer to packet header start.

• <offset>:
This is the according offset to packet header start.

• <header field>:
Type of the header field which has to be used for packet classification.

• <width>:
 This is the width of the according header field.

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 40

8 Conclusions

In the document we have revised six DIADEM application programming interfaces (APIs): Service,
Response, Notify, Monitor, Firewall and Classifier API. The APIs provide functionality in the network
and on the system elements that enables operation of the DIADEM distributed firewall architecture as
defined in D5 [3]. Monitoring API enables configuration of the Monitoring Elements and Monitoring
Devices and collection, exportation and aggregation of monitored data. Notify API provides a way to
deliver the attack notifications generated in Violation Detection to the System Manager and event
service to trigger policies in the system. The System Manager can mitigate detected attacks with the
Response API exported by Firewall Elements. The Response API uses Firewall API to access response
mechanisms of the Firewall Devices in a unified way disregard of the Firewall Device type. On the
end the Service API enables the System Manager to deploy, control and remove the policies or code
modules to Firewall and Monitoring Elements. The Service API also provides the functions to query
elements configuration and capabilities.
The presented APIs support the goals of the distributed firewall architecture as foreseen in DIADEM
project: distributed monitoring and aggregation of network data, flexible and simple exchange of
notifications and events in the system, centralized, hierarchical or distributed management of the
elements with possibility of policy deployed and interpretation, extensibility of elements with new
response mechanisms with deployment of new code modules, ability to integrate in the infrastructure
existing devices for monitoring and firewall tasks and possibility of high speed classification in
hardware to provide response mechanisms on broadband connections.
The APIs are illustrated with examples that together support the planned demonstration of the
DIADEM firewall use cases as are defined in D7 [4].

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 41

9 References

[1] Distributed Adaptive Security by Programmable Firewall, DIADEM Firewall Technical
Annex, August, 2003.

[2] Initial interface specification, DIADEM Firewall deliverable D2, July 2004.
[3] Architecture Specification, DIADEM Firewall deliverable D5, 2005.
[4] Initial Demonstrator Specification, DIADEM Firewall deliverable D7, 2005.
[5] B. Claise, “IPFIX Protocol Specification”, draft-ietf-ipfix-protocol-05, August 2004.
[6] R. Enns, “NETCONF Configuration Protocol”, draft-ietf-netconf-prot-04, October 2004.
[7] J. Quittek et al., “Requirements for IP Flow Information Export (IPFIX)”, RFC 3917, October

2004.
[8] IETF Network Configuration (Netconf) working group, homepage:

http://www.ietf.org/html.charters/netconf-charter.html.
[9] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.
[10] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H., Thatte, S.

and D. Winer, "Simple Object Access Protocol (SOAP) 1.1", W3C Note NOTE-SOAP-
20000508, May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508].

[11] T. Dietz et al., “Information Model for Packet Sampling Exports”, draft-ietf-psamp-info-02,
July 2004.

[12] Cisco Netflow MIB, Revision 200401090000Z, downloaded from http://www.cisco.com.
[13] T. Dietz et al. “Definitions of Managed Objects for Packet Sampling”, draft-ietf-psamp-mib-

03, July 2004.
[14] T. Zseby et al., “Sampling and Filtering Techniques for IP Packet Selection”, draft-ietf-psamp-

sample-tech-04, February 2004.
[15] J. Salim, H. Khosravi, A. Kleen, A. Kuznetsov, Linux Netlink as an IP Services Protocol, RFC

3549, July 2003, http://www.ietf.org/rfc/rfc3549.txt.

Copyright © 2004 DIADEM Firewall Consortium January 2005

http://www.ietf.org/html.charters/netconf-charter.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.cisco.com/
http://www.ietf.org/rfc/rfc3549.txt

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 42

10 Appendix

1 XML Schema Definition of Monitoring API

1.1 Monitoring Element Configuration (monitor-config.xml-schema.xsd)
This XML Schema defines the XML root element of the configuration data structure <monitorConfig>
that is used in Netconf messages. Further type definitions are grouped in four files that are imported at
the beginning of this schema:

• common-types-xml-schema.xsd (see appendix 1.2)
• meter-types-xml-schema.xsd (see appendix 1.3)
• sampler-types-xml-schema.xsd (see appendix 1.4)
• exporter-types-xml-schema.xsd (see appendix 1.5)

The string “diadem-firewall.org/MonitoringAPI” serves as a unique identifier for the namespace of the
XML Schema. It does not represent a valid URL.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="diadem-firewall.org/MonitoringAPI"
 xmlns="diadem-firewall.org/MonitoringAPI"
 elementFormDefault="qualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML Schema for IPFIX/PSAMP monitoring element/device configuration.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="./common-types-xml-schema.xsd" />
 <xsd:include schemaLocation="./exporter-types-xml-schema.xsd" />
 <xsd:include schemaLocation="./meter-types-xml-schema.xsd" />
 <xsd:include schemaLocation="./sampler-types-xml-schema.xsd" />

 <xsd:element name="monitorConfig">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="meters" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="meter" type="meter_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="samplers" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="sampler" type="sampler_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="aggregators" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="aggregator" type="aggregator_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="exporters" minOccurs="0">

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 43

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="exporter" type="exporter_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="dataTemplates" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="dataTemplate" type="dataTemplate_type"
maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="optionTemplates" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="optionTemplate" type="optionTemplate_type"
maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

1.2 Common Types Definition (common-types-xml-schema.xsd)
Defines :

• operation_type (used for operation attribute, see 5.3.7)
• dataTemplate_type
• optionTemplate_type
• templateField_type
• ipFilter_type

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="diadem-firewall.org/MonitoringAPI"
 xmlns="diadem-firewall.org/MonitoringAPI"
 elementFormDefault="qualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML Schema of common types used for IPFIX/PSAMP configuration.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:simpleType name="operation_type">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="merge" />
 <xsd:enumeration value="replace" />
 <xsd:enumeration value="create" />
 <xsd:enumeration value="delete" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="dataTemplate_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="field" type="templateField_type" minOccurs="0"
maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 44

 <xsd:complexType name="optionTemplate_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="scopeField" type="templateField_type" minOccurs="0"
maxOccurs="unbounded" />
 <xsd:element name="optionField" type="templateField_type" minOccurs="0"
maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

 <xsd:complexType name="templateField_type">
 <xsd:sequence>
 <xsd:element name="type" type="xsd:unsignedInt" />
 <xsd:element name="enterprise" type="xsd:unsignedInt" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ipFilter_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="srcAddress" type="xsd:string" minOccurs="0" />
 <xsd:element name="srcAddressLength" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="dstAddress" type="xsd:string" minOccurs="0" />
 <xsd:element name="dstAddressLength" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="srcPortMin" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="srcPortMax" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="dstPortMin" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="dstPortMax" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="protocol" type="xsd:unsignedInt" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

</xsd:schema>

Element Description Attributes and subelements
field, scopeField,
optionField

Field definition in a template
(see [5] for more information).

type: numeric value of the
field type
enterprise: IANA
enterprise number for vender-
specific types

srcAddress,
srcAddressLength,
dstAddress,
dstAddressLength,
srcPortMin,
srcPortMax,
dstPortMin,
dstPortMax, protocol

IP filter 5-tuple. Omitted
elements are considered as a
wildcard.

none

1.3 Metering Process Types Definition (meter-types-xml-schema.xsd)
Defines :

• meter_type
• aggregator_type
• rule_type

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="diadem-firewall.org/MonitoringAPI"
 xmlns="diadem-firewall.org/MonitoringAPI"
 elementFormDefault="qualified">

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 45

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML Schema of types for flow metering and aggregation process configuration.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType name="meter_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="templateId" type="xsd:unsignedInt" />
 <xsd:element name="interface" type="xsd:string" minOccurs="0" />
 <xsd:element name="exportPeriod" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="flowExpirationTime" type="xsd:unsignedInt" minOccurs="0"
/>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="ipFilter" type="ipFilter_type" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

 <xsd:complexType name="aggregator_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="meterIds" minOccurs="0">
 <xsd:simpleType>
 <xsd:list itemType="xsd:unsignedInt" />
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="rules" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="rule" type="rule_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

 <xsd:complexType name="rule_type">
 <xsd:sequence>
 <xsd:element name="templateId" type="xsd:unsignedInt" />
 <xsd:element name="match" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="type" type="xsd:unsignedInt" />
 <xsd:element name="enterprise" type="xsd:unsignedInt"
minOccurs="0" />
 <xsd:element name="pattern" type="xsd:string" />
 <xsd:element name="keep" minOccurs="0">
 <xsd:complexType>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

</xsd:schema>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 46

Description of the subelements in meter_type:

Element Description Attributes and subelements
templateId Identifier of the template to be

used for exporting the flow
records.

None

interface Interface where packets are
captured (observation point).

None

exportPeriod Time interval (in microseconds)
for periodical delivery of the
statistics of ongoing flows to
the exporting processes.

None

flowExpirationTime If no more packets are observed
during this time interval (in
seconds), a flow is considered
as expired.

None

filters Packet filters that restrict the
considered flows.

ipFilter or alternative filter

Description of the subelements in aggregator_type:

Element Description Attributes and subelements
meterIds Identifer list of associated

meters.
None

rule Explicit aggregation rule. id: rule identifier
operation: used in <edit-
config>
templateId: identifier of
the template to be used for
exporting the metaflow records
match: see below

match Specifies a flow attribute, a
match pattern and an optional
“keep” parameter.

type: numeric value of the
IPFIX field type
enterprise: IANA
enterprise number for vender-
specific types
pattern: match pattern
keep: “keep” parameter
(empty element)

1.4 Sampling Process Types Definition (sampler-types-xml-schema.xsd)
Defines :

• sampler_type
• selectAll_type
• countBased_type
• timeBased_type
• randOufOfN_type
• uniProb_type
• nonUniProb_type
• flowState_type

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 47

 targetNamespace="diadem-firewall.org/MonitoringAPI"
 xmlns="diadem-firewall.org/MonitoringAPI"
 elementFormDefault="qualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML Schema of types for sampling process configuration.
 reference: draft-ietf-psamp-mib-03.txt
 </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType name="sampler_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="templateId" type="xsd:unsignedInt" />
 <xsd:element name="interface" type="xsd:string" minOccurs="0" />
 <xsd:element name="method" minOccurs="0">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="selectAll" type="selectAll_type" />
 <xsd:element name="countBased" type="countBased_type" />
 <xsd:element name="timeBased" type="timeBased_type" />
 <xsd:element name="randOutOfN" type="randOutOfN_type" />
 <xsd:element name="uniProb" type="uniProb_type" />
 <xsd:element name="nonUniProb" type="nonUniProb_type" />
 <xsd:element name="flowState" type="flowState_type" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="filters" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ipFilter" type="ipFilter_type"
maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

 <xsd:complexType name="selectAll_type" />

 <xsd:complexType name="countBased_type">
 <xsd:sequence>
 <xsd:element name="interval" type="xsd:unsignedInt" />
 <xsd:element name="spacing" type="xsd:unsignedInt" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="timeBased_type">
 <xsd:sequence>
 <xsd:element name="interval" type="xsd:unsignedInt" />
 <xsd:element name="spacing" type="xsd:unsignedInt" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="randOutOfN_type">
 <xsd:sequence>
 <xsd:element name="population" type="xsd:unsignedInt" />
 <xsd:element name="size" type="xsd:unsignedInt" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="uniProb_type">
 <xsd:sequence>
 <xsd:element name="probability" type="xsd:unsignedInt">
 <xsd:annotation>

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 48

 <xsd:documentation xml:lang="en">
 The given value must be divided by 4294967295
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="nonUniProb_type" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Non-uniform sampling parameters not specified here.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any minOccurs="0" maxOccurs="unbounded" processContents="skip" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="flowState_type" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Flow-state sampling parameters not specified here.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any minOccurs="0" maxOccurs="unbounded" processContents="skip" />
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

Element Description Attributes and subelements
templateId Identifier of the template to be

used for exporting the sampled
packets.

None

interface Interface where packets are
captured (observation point).

None

selectAll Select all packets. None
countBased Apply count-based sampling. interval: number of

packets sample consecutively
spacing: number of packets
that pass unsampled between
two sampling intervals

timeBased Apply time-based sampling. interval: time interval in
microseconds in which packets
are sampled
spacing: time interval in
microseconds between two
sampling intervals

randOutOfN Apply random n-out-of-N
sampling.

population: number of
elements in the parent
population
size: number of elements
taken from the parent
population

uniProb Apply uniform probabilistic
sampling.

probability: this value
divided by 4294967295 is the
sampling probability

nonUniProb Apply non-uniform
probabilistic sampling.

not specified

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 49

flowState Apply flow state sampling. not specified
filters Filters that restrict the

considered flows.
ipFilter or alternative filter

1.5 Exporting Process Types Definition (exporter-types-xml-schema.xsd)
Defines :

• exporter_type
• collector_type

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="diadem-firewall.org/MonitoringAPI"
 xmlns="diadem-firewall.org/MonitoringAPI"
 elementFormDefault="qualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 XML Schema of types for exporting process configuration
 </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType name="exporter_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="collectors" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="collector" type="collector_type"
maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="meterIds" minOccurs="0">
 <xsd:simpleType>
 <xsd:list itemType="xsd:unsignedInt" />
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="samplerIds" minOccurs="0">
 <xsd:simpleType>
 <xsd:list itemType="xsd:unsignedInt" />
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="aggregatorIds" minOccurs="0">
 <xsd:simpleType>
 <xsd:list itemType="xsd:unsignedInt" />
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="dataSendTimeout" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="templateTimeout" type="xsd:unsignedInt" minOccurs="0" />
 <xsd:element name="templateRefreshRate" type="xsd:unsignedInt" minOccurs="0"
/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

 <xsd:complexType name="collector_type">
 <xsd:sequence minOccurs="0">
 <xsd:element name="address" type="xsd:string" />
 <xsd:element name="port" type="xsd:unsignedInt" />
 <xsd:element name="protocol">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="udp" />
 <xsd:enumeration value="tcp" />
 <xsd:enumeration value="sctp" />

Copyright © 2004 DIADEM Firewall Consortium January 2005

DIADEM Firewall Deliverable D6: Revised Interfaces Specification 50

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:unsignedInt" use="required" />
 <xsd:attribute name="operation" type="operation_type" use="optional" />
 </xsd:complexType>

</xsd:schema>

Element Description Attributes and subelements
collector Collector the monitoring data is

sent to.
id: collector identifier
operation: used in <edit-
config>
address, port: collector
IP address and port
protocol: transport protocol

aggregatorId,
meterIds, samplerIds

Aggregator identifier or
identifer list of associated
meters or samplers.

none

dataSendTimeout In order to reduce the number
of IPFIX messages, it is
advantageous not to sent
exported data sets immediately,
but to wait until the IPFIX
message is filled with a certain
amount of data. This parameter
indicates the maximum time (in
microseconds) to wait for more
data until an exported data set is
sent.

none

templateTimeout Time interval (in minutes) for
periodical resending of the used
templates to the collectors. If
set 0, no time interval is used.

none

templateRefreshRate Amount of IPFIX packets after
which the used templates are
resent. If set 0, template
resending does not dependent
on the amount of packets.

none

Copyright © 2004 DIADEM Firewall Consortium January 2005

	Introduction
	Service API
	Load/Remove policy
	Activate/Disable policy
	Load/Remove module
	Query capabilities of the element
	Query configuration/state of the element
	Examples

	Response API
	Kill session
	Redirect

	Notify API
	IDMEF Message Format
	Notify API example
	Elvin Content Based Messaging

	Monitoring API
	Netconf protocol
	General Information
	Remote procedure calls and operations
	Transport protocol requirements
	Configuration datastores
	Netconf capabilities

	Netconf Operations
	<get-config>
	<edit-config>
	<copy-config>
	<delete-config>
	<lock>
	<unlock>
	<get>
	<close-session>
	<kill-session>

	Configuration of Monitoring Elements using Netconf
	Root element <monitorConfig>
	Common types
	Exporting process configuration types
	IP flow metering process configuration types
	Aggregation process configuration types
	Packet sampling configuration types
	Usage of the operation attribute

	Examples
	Example: Configuration of an IP flow exporter
	Example: Reconfiguration of a packet sampler

	Firewall API
	Operations on a group
	Rule operations
	Communication in between Firewall Element and Firewall devic

	Classifier API
	Rule-specific functions
	Abstract packet-filter Rule description
	Insert rule
	Delete rule
	Append rule
	Modify rule
	Search function
	Setup function

	Conclusions
	References
	Appendix
	XML Schema Definition of Monitoring API
	Monitoring Element Configuration (monitor-config.xml-schema.
	Common Types Definition (common-types-xml-schema.xsd)
	Metering Process Types Definition (meter-types-xml-schema.xs
	Sampling Process Types Definition (sampler-types-xml-schema.
	Exporting Process Types Definition (exporter-types-xml-schem

